Procedurally Generated History: building a game
ecosystem through autoplay

Gabriele Trovato
Waseda University
#41-3-04/05, 17 Kikui-cho, Shinjuku-ku,
Tokyo-to, 162-0044, Japan
+81-3-3203-4394
gabriele @takanishi.mech.waseda.ac.jp

ABSTRACT

Generating interesting game worlds is an ongoing challenge
within Procedural Content Generation (PCG). While the use of
algorithms for automatically generating content could potentially
bring many advantages, the content itself is often random and not
well-crafted. In this paper we explore a potential solution to this
issue by creating meaning through procedurally tracing a
“history” of the game world while constructing it. We introduce a
novel approach, called Procedurally Generated History (PGH),
which consists of building a game world history through
controlled autoplay. The resulting game ecosystem is expected to
be engaging and balanced as hand-made content, while still
preserving replayability. PGH was implemented in a modpack for
Sid Meier’s Civilization IV. Tests with the modpack demonstrated
the soundness and balance of the results of the PGH approach.

Keywords

Procedural Content Generation, game design, strategy games

1. INTRODUCTION

The ability to explore a new environment is one of the main
attractions to players of open-world games, such as RPGs and
strategy games. Game designers can either generate a world
automatically (which happens in, for instance, “rogue-likes”), or
craft it by hand. Crafted worlds are usually interesting, but there is
only one world for the player to explore. Generated worlds are
usually much less interesting because there tends to be little
meaning behind the world’s features.

A world that feels interesting to the player has to be well-
structured. One way of imposing structure on a world is to make
sure that there is a reasonable history behind the world’s
construction. Our goal in this paper is to create a system that
procedurally traces a history to end up with a well-structured,
automatically generated world. The term /istory is used in a broad
sense, as a series of events which contribute to the making of the
“ecosystem” in which the human player enters the game. It may

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).

Soren Johnson
Mohawk Games
1966 Greenspring Dr, Suite 105
Timonium, MD 21093, USA
+1 443-564-9814

soren.johnson@gmail.com

Pieter Spronck
Tilburg University
Dante Building, Warandelaan 2
5037 AB Tilburg, Netherlands
+31 13 466 2695

p.spronck@uvt.nl

encompass, for instance, the Earth’s history, or the background
stories of a fantasy world. Through the generation of a diverging
history, the game experience will be different too.

1.1 Related work

Programmatic generation of game content using a process that
results in a range of possible game play spaces is known as
Procedural Content Generation (PCG) [3]. PCG is useful for
creating game content such as levels, maps, quests, textures,
characters, vegetation, and even rules, allowing game designers to
save time and produce content that because of the randomness,
gains replayability, without changing the core of the game.

PCG has been attempted since the 1980s, and it is argued that the
use of PCG may lead in the near future to a rethinking of the level
designer’s job [3]; however, it is still a challenging topic
nowadays. In almost all commercial games that feature large open
worlds, the environments are mostly designed manually, as it is
recognized that procedurally generated environments tend to be
less interesting than manually designed ones.

Togelius et al [10] suggest three main goals and nine challenges
that should be achieved in PCG. Among those challenges, the
search space construction is particularly related to the concept that
we are presenting in this paper.

Several types of PCG methods exist, most of which are search-
based [9]. They can be categorized as: online or offline
generation; the extent of generated content; and the extent of how
an algorithm can be parameterized [9]. Most methods focus on
generating small maps or levels, for which the main requirements
are high variety and the satisfaction of some spatial constraints.

A challenge is to make any generated content “interesting” or
“meaningful”. A typical solution to this challenge is to pre-define
the “required content” of the world, and only generate the
connections in between [1,7,9].

1.2 Procedurally Generated History

In this paper we describe a novel approach to the generation of
meaningful game worlds, which we call Procedurally Generated
History (PGH). The idea behind the approach is that the game
content is generated by initializing the game world by populating
an undeveloped landscape with small initial factions, then let the
world evolve by having the factions use autoplay (self-play) to
grow and develop, under supervision of a management system.
The approach is particularly appropriate for strategy games, but
can be applied to any game in which there is a map to explore,

and in which there are a multiple players pursuing final victory. It
is reminiscent of the world generation system in the indie game
Dwarf Fortress (Bay 12 Games, under development since 2002).
Here, and in the rest of the paper, we use the term “player” for any
Al or human player who participates in the game as a faction. If
we refer to human or Al players specifically, it will be clarified.

This paper is constructed as follows. We explain the concepts
behind PGH in Section 2. The concepts were implemented in a
mod for the commercial turn-based strategy game Sid Meier’s
Civilization IV, which we discuss in Section 3. We performed
several tests of the mod, which are described in Section 4. Section
5 evaluates and discusses the results. Section 6 concludes and
outlines future work.

2. CONCEPTS

Many strategy games offer two different modes of play: the
standard game, which is based on automatically generated maps,
with random variables, and the fixed scenario game (sometimes as
a campaign). Scenarios feature the game map in a particular state,
which is typically drawn manually by a scenario designer.

The standard game has high replayability, although its
randomness can lead to boring playthroughs, as non-controlled
variables may produce game situations that are less engaging.
Conversely, the fixed scenario game provides a more balanced
and engaging play experience, at the cost of diminished replay
value: once the scenario has been beaten, there is little point in
playing again, except for challenging one’s own best score or for
trying different strategies.

Our PGH approach aims to gain the advantages of both described
modes of play (see Table 1). To go from the standard game to the
PGH game, one needs to guide the random game generation
through the addition of constraints (left to right in Table 1). To go
from a fixed scenario to a PGH game, one needs to add flexibility
through loosening constraints (right to left in Table 1). The
synthesis between the two approaches is the main idea behind
PGH: fix the constraints and let the game produce interesting
content by itself, which can be accurate, balanced and engaging
like a scenario, but is different in every instance.

PGH involves several aspects of game content: the main points
mentioned in Table 1 are explained in the following subsections.
Each one of these concepts can be implemented differently
depending on the specific game. Section 3 offers our
implementation for Sid Meier’s Civilization IV

2.1 Autoplay

In this paper, we are considering a subtype of videogames, which
feature a map and a number of factions which pursue victory. In
such games, usually one faction can be controlled by the human
player, while the other factions are controlled by Al. This is
typical for most strategy games (both RTS and turn-based). In
such a setup, it is possible to replace the human player with an Al
and let the game autoplay, i.e., let Al control all the factions in the
game, and let the game progress as if a human is actually
interacting with it, until a specific amount of (in-game) time has
elapsed. Many game developers use such an approach for
evaluation purposes: in PGH, we intend to use it as part of
generation of the content.

Table 1. Differences between a standard game with random
map, a fixed scenario, and our PGH approach

Standard game » PGH
Fixed starting 7 Autoplay until Fixed starting
time at game start starting time time
Standard number DZ}I::IIE;:I?;}/ Scenario-specific
of players number of players number of players
Players s.trength Players strength Players s'trength
depending on controlled fo depending on
standard difficulty their role in the
prevent unbalance .
levels scenario

Als with standard
behaviour

Customized Als
which pursue

Als pursue fixed
scenario goals

sub-goals
Events as a way to
control autoplay
Either random or
hand-drawn, map
can be modified at

No scripted events Scripted events

Random map Hand-drawn map

runtime
Results in: Results in: Results in:
replayable game, realistic and realistic history,
no history replayable history little replayability

Autoplay has a central role in PGH: the game plays itself until a
certain time at which the human player enters the game. In every
instance, the generated ecosystem will be different, possibly in
unexpected ways, but always within the desired constraints.

For this purpose, autoplay alone is not enough; it must be guided
by an integrated management system. During autoplay, PGH
retains control over the world that is generated by managing the
number of players (2.2), balancing player strength (2.3), ensuring
personalization of Al (2.4), and addressing the course of history
through events and world changes (2.5).

2.2 Management of complexity

A generated ecosystem should be self-sustainable, i.e., must
ensure that its complexity does not grow beyond acceptable
bounds. This is especially true in case of a large number of Al
players. For example, in strategy games, each faction produces
units, buildings, and other infrastructures that develop with time.
Factions tend to grow, and as such the complexity of the game
grows. As complexity grows, loading times may increase
exponentially. Thus, PGH should ensure that complexity remains
low enough that the system will be able to produce good results
within a reasonable amount of time.

The number and capabilities of Al players should be managed
dynamically, as while loading times may be reasonable at the start
of the game, the world is likely to clog up in later stages. The
extension of some Al players may grow out of control. The most
important function of the PGH management system is to take care
of keeping the complexity of the world as a whole in reigns.

The generic concept is based on parametric functions and on a
dynamic system of rewards and penalties, as shown in Figure 1,
which is explained as follows. Calculations are performed
continuously or periodically, measuring the performance of
players via some parameters. These performance criteria are not
specifically measuring how strong a player is, but rather
determining if the player is a candidate to be excluded from the

game or to be merged with another player. Ratings are produced
as output: the player is made aware of such ratings and may take
actions consequently, which will be used in the next set of
calculations. When one player is defeated, other players may
benefit from the change. Conversely, a new player may be added
when number of players gets too low compared to the optimal
number, which is set at the start of the PGH process.

Rulesand
constraints

Calculations
(rewards/
penalties)

Player’s
decisions

Threshold

Player’s
actions

Parameters

i Player added
of evaluation

Player defeated

New
competition
to the players

Other players
get benefits

I Game world I

Figure 1. System for dynamic management of complexity.

2.3 Players strength balance

A world that develops on its own will produce a different history
in every game. Because of this, the degree of challenge might vary
considerably for a human player from game to game. During the
autoplay process, the game must be rebalanced whenever some Al
players are becoming too powerful or too weak. The calculations
used for the management of complexity (Section 2.2) are useful
for this purpose.

The performance of players within this management system
indicates how suitable they are for inclusion in an “interesting
game”, and is different from their actual strength in the game.
Conversely, the system will evaluate “being too strong” as a
negative performance. As a result a strong player will have to face
increasing challenges to manage its own strength. This does not
mean punishing a player for being strong, but rather letting such a
player face increasing difficulty in managing its achievements.
Three cases can happen when a player gets increased challenges:

1. The player fails and gets defeated, and is replaced by a
new player (see Section 2.2). The new player has to be
given some advantage to catch up with the rest of the
players and be at least “average”. To achieve that, the
new player can be constructed using a crossover
operator that uses existing players as “parents”.

2. The player struggles to manage the challenge and gets
weaker, thereby “mutating” into a player that may
remain in the game.

3. The player succeeds in mastering the challenge and
stays in the game, which may lead to the player having
to face new increased challenges.

In Section 3.3 an example of implementation of this approach will
be discussed.

2.4 Personalization and roleplaying

A credible, sound history which can be recognized from a
generated world triggers suspension of disbelief in the human
player. As in the PGH approach the world’s history is created by

autoplay, Al players must base their decisions on “roleplaying”
rather than “choosing effective actions”.

Generally speaking, depending on the game, Al can be designed
as a simple replacement of a human player, striving to achieve
some goals as effectively as possible, or be designed as an entity
that contributes to the human player’s experience by exhibiting a
“personality” [4]. The two roles are not necessarily a dichotomy.
Through the personalization of the Al for each player, and the
design of specific sub-goals that match the personalization, it is
possible to make Als pursue goals while at the same time
appearing to be roleplaying. PGH provides Al players with
personalization, and goals that match their personalization,
thereby forcing the Al to “roleplay”.

2.5 Addressing the course of history

In order to help the history develop in a certain direction, specific
events may need to occur. A “non-invasive” way to address
historic needs is to add events that are triggered under certain
conditions. Events are also useful for adding variation, or for
balance purposes. For example, a plague that decimates a large
army of soldiers or a fluctuation of prices due to an economic
crisis, are events that can manipulate history in a certain direction.

In some cases it may be necessary to modify the world in order to
accommodate events. If such changes are made while the human
player is already interacting with the game, they should go
unnoticed (for example, changes could be done in an area covered
by fog of war). This way of doing modifications resembles a
“Wizard-of-Oz” technique in robotics [6]. A Wizard-of-Oz
experiment is one in which robots are used as puppets to
overcome their lack of autonomy, while subjects interact with
them believing they are really autonomous. Same as in robotics,
the designer’s hand should not be revealed to avoid players
feeling cheated.

3. IMPLEMENTATION

The PGH approach was implemented as two mods for Sid Meier’s
Civilization IV. We describe their different features below.

3.1 Mods for Sid Meier’s Civilization IV

Sid Meier’s Civilization IV is a turn-based strategy game in which
players develop a cilization, of which the final goal is to dominate
the world through some victory conditions. In a standard game
mode, all civilizations start at in-game time 4000 BC, and the
game unfolds through the ages. Maps are generated randomly.
Next to the standard mode, the game also features static scenarios
on a small portion of the timeline, with players’ cities and units
already placed.

The two mods we discuss here are Rhye’s and Fall of Civilization
(in short RFC), which plays on a map of Earth, and its random-
map version RFC RAND. These mods, developed by the first
author, feature all the concepts mentioned in Section 2, and are
implemented as shown in Table 2. The first column in Table 2
corresponds to the central column of Table 1. Each of the features
will be discussed in the following paragraphs.

Note that in these mods, the PGH approach will continue to
regulate the environment even after the human player has entered
the game, to ensure that the history of the world not only feels
“natural” upon the moment of the human’s entrance, but also
afterwards.

Table 2. Implementation of the main PGH features
in modpacks RFC / RFC RAND

PGH RFC/RFC RAND

Autoplay for generating a late

Autoplay until starting time start for each civilization

Dynamically changing
number of players

Number of players changing
through the stability system

Players strength controlled to
prevent unbalance

Players strength controlled
through the stability system

Modifiers for Al expansion
and differentiated victory
conditions

Customized Als which
pursue sub-goals

Plague; World Congresses;
Conquistadors; Great
Depression

Events as a way to control
autoplay

Either random or hand-drawn,
map can be modified at
runtime

Starting locations hidden by
fog of war are cleaned up

3.2 Autoplay

In the standard version of Sid Meier’s Civilization IV, all the
players start at the same time in the Ancient Age, 4000BC. In
RFC, each civilization has a different starting year. The human
player, choosing a civilization, will start playing in a specific year
in which the civilization is born: around 753 BC in case the
Romans, in the Middle Ages in case of European nations, etc.
Until the year of entry, the game is in autoplay mode.

3.3 Stability system

The core of the PGH management system introduced in Section 2
is implemented in RFC as a “Stability System”. This system is
integrated in the game, running in the background using measured
data, and also provides feedback to the players, enhancing their
play experience. The key concept is to determine what can make a
civilization “stable” or “on the verge of collapse”. This a process
that is a persistent feature of world history: complex societies
have to increase their level of complexity in order to survive new
challenges, while the returns on their investments reduces with
time [8], a mechanic that mirrors the players’ strength balance
explained in Section 2.3. The calculation of each civilization’s
stability is proportional to several factors regarding expansion,
government, economy, city management and foreign relations.

The generic formula (Equation 1) is calculated every game turn 7:

Stor =8, +8, =Y b"w +87" (D)

Sror is the total stability, sum of a base stability S, and of the
permanent modifier S,. Base stability is the sum of all the weights
w; associated to the base stability factors b, These factors are
information about the civilization taken directly from the game.
Examples include: number of cities, government type, population,
religion, percentage of unhappy citizens, and GDP. Each b; is
multiplied by its weight w;, which normalizes the value, resulting
in a positive or negative term. The sum of the terms is calculated
every turn, as in Table 3 (“New base stability”). Civilizations
affect each other: having an unstable neighbour is a factor that
brings instability. Interaction between the factors is also possible:
wars may have a negative impact on civilizations, but can be
positive for civilizations under a totalitarian regime.

While S}, is recalculated every game turn, the permanent modifier
S, is updated when certain events related to stability are triggered.

Equation 2 expresses such an adaptation to the permanent
modifier at turn 7, when event e occurs. Examples of events are:
war declared, city razed, peace signed, and building constructed.

S;}Te) — S}()Te—l) + We (2)

An example is given in Table 3. During a game, at turn 200, one
civilization’s modifiers S, and S, are respectively 23 and 12. The
civilization founds a city during turn 200, triggering a permanent
bonus (+3). However, during the next calculations of the base
stability, the empire size turns out to be quite large, and among
other factors b;, the one related to the number of cities adds a
malus (-4). At turn 202, the new city is under attack: enemy units
within the borders are regarded as a negative factor (-2) for base
stability. The following military victory triggers a +1 permanent
bonus, and subsequently enemy units retreat: at turn 203, base
stability is back to 19.

Table 3. Example of calculation of stability

Turn Calculation Sy S, Sror
200 | New base stability 23 12 35
200 | City founded (+3) 23 15 38
201 | New base stability 19 15 34
202 | New base stability 17 15 32
202 | Military victory (+1) 17 16 33
203 | New base stability 19 16 35

Six levels of stability are assigned depending on Syp7: [very solid /
solid / stable / shaky / unstable / collapsing]. Periodically, one of
the civilizations with a value of Sror in the unstable or collapsing
zone will see a part of their territory split up, or even the whole
empire descend into civil war and materially leave the game. This
may happen to any civilization regardless of their strength: for
example, a strong empire, facing a temporary period of economic
depression may cause the stability to be ranked as low.
Controlling a rival civilization’s motherland may also cause
trouble. As explained in Section 2.3, preventing a player of
becoming too strong is part of this mechanic. Weak civilizations
are also likely to end up in unstable zone by losing wars or having
poor base factors b;. These civilizations will be at risk of breaking
up or being absorbed by neighbouring civilizations.

The whole system, in symbiosis with the game world, will make
the game develop within certain constraints during autoplay, and
keeps on regulating complexity also after the human player enters
the game. The feedback to the players (in Figure 1, the arrow
entering the “Player’s decisions” block) is provided displaying the
current level of stability, the numerical value Syor, and an arrow
pointing up or down in case there has been some recent change.
Further information is provided displaying the breakdown into
five main categories (shown in Figure 2, at the bottom) which are
rated from 1 star (minimum) to 5 stars (maximum).

T

STABILITY: Shaky (-1) %

bl i ot ol A7 e A ;_,\;\ (L S
ECONOMY

CITIES i CIVICS EXPANSION | FOREIGN

i [|

* & b * K * K Kk K ¥ * * * | * K Kk

(11 (] A (+22) ¥ (43) ! (-5)
4

.

Figure 2. Stability feedback panel

Players can effectively improve their stability by taking decisions
according to this feedback. It is important to give to the player
additional tools for management, in the form of extended
government options, which in the mods are provided through an
additional panel. In the previous example, we mentioned that
control of a rival’s motherland may cause instability. Treating
those lands as part of the empire, or as viceroyalty, as
commonwealth or as occupied area, results in significantly
different stability calculations.

3.4 Roleplaying

As stated in Section 2.4, Als can be competitive and at the same
time roleplay their personality. Each civilization Al has been
customized in order to expand in a way that is appropriate to the
the civilization’s role in real history. For example, a seafaring
civilization, such as Portugal, will be active in colonising some
locations in the East Coast of South America and in other
continents, while maintaining a small mainland territory. This
kind of behaviour is easy to achieve when the map is fixed, which
it is in RFC: the implementation consists of assigning modifiers,
rewards or penalties to the desired locations on the map. RFC
RAND, however, uses generated maps, which makes it harder to
achieve as there is no “South America”. For RFC RAND, each
civilization calculates modifiers based on latitude, longitude and
other geographical data of the generated world, and on relative
position of other civilizations cities. The calculations can be
stored in tables (in case of RFC) where each cell represents the
modifier of a map tile, or (in case of RFC RAND) can be done
online when necessary, storing only geographical parameters.

In line with their personalization, different Als have different
victory conditions. For example, Portugal may have to found a
certain number of colonies, or to monopolize overseas spice
markets, in order to win. In this way, each Al is playing its own
game with different goals, and the generated history will feature a
situation in which the human player will need to stop some of
those Als from winning according to their victory conditions.

Personalization of Als and monitoring of Al goals is performed in
an integrated way by the PGH management system, as all data
regarding geography, as well as achievement of goals, are
providing feedback to the stability system.

3.5 Events and changes at runtime
A few events have been added to RFC. Among them:

e Plague that decimates units which are considered
excessive (to restrict complexity / loading times);

e World Congresses are held where cities are traded, and
Als try to pursue their own goals;

e Bonus units (“conquistadors”) are given when a
civilization from Eurasia meets the New World
civilizations for the first time;

e Great Depressions can be triggered based on economic
calculations.

All these events, similar to the implemented concepts of Section
3.4, are managed in an integrated way with the stability system.

Direct intervention at runtime is also needed. In RFC RAND,
there are cases in which later civilizations spawn in weak starting
locations, which are calculated online. This may happen as the
map is randomly generated (with some constraints), and the game

may have been developing in unpredictable ways. In such cases,
additional help might be needed in “cleaning” and improving the
starting location, in order to give the civilization a balanced start.

An example of such changes is show in Figure 3. In the upper
image, a location has to be assigned as starting point for a new
civilization. The area is small, near tundra (grey tiles) and very
close to another civilization’s border (in red). Once the best tile in
the area is selected, improvements (marked with yellow arrows in
the bottom image) are automatically done, turning tundra into
grassland (green terrain); mountains into hills; and adding iron, a
strategic resource. These changes are not seen by the human
player, and result into a more balanced starting location, which
will eventually generate a more balanced history.

Figure 3. Changes made to a new player’s starting location at
runtime: the territory before the changes (top), and modified
terrain (bottom) with arrows indicating changes

4. TESTS

We evaluated the effectiveness of the implementation explained in
Section 3 by running tests. The goal of the mods is to generate a
history that is interesting to play. In order to be considered
interesting, it has to be judged as sound (realistic) and fun (well-
balanced). These attributes are verified in the following sections.

4.1 Soundness of history

In Civilization, realism is intended to be ‘“historical realism”,
which is something difficult to measure numerically. We tested
this goal through a qualitative analysis of fifteen trials of RFC
(i.e., on the Earth map).

We let the game autoplay until the birth of the United States of
America, in late game. A player starting to play in 1775 AD
would expect to find a realistic world coherent with of
geopolitical situation of 1775 AD in Earth history (Table 4,
second row). A scenario fixed at that date would feature such a
situation through manual design. Conversely, RFC should achieve
similar results through autoplay only (results in Table 3, from the
third row down). During development of the mod, it was ensured
that the civilization expand according to Earth history, and was

checked for all the possible human player’s starting times, not just
1775 AD. As can be seen in Table 4, the generated games often
show remarkable similarity to Earth history, with some interesting
variations (more on this in Section 5.1).

Table 4. Dominating civilizations in each continent after
autoplay until 1775 AD

4.2 Strength balance

In Civilization, the most obvious way of measuring a player’s
strength is overall score. In Table 5 we report the results of 24
tests performed with RFC RAND, showing civilization scores at
halfway point (250 turns) and the end of the game (500 turns). We
ran four different games on random maps, stopped the autoplay
and recorded the scores. For each of the four games, we ran three

. North South L .
Trial n. Amoerrica An'::rica Europe Africa Asia | Oceania trials and compared the result with three d.1ffere1}t trials in which
Earth | o ppa | POR/ FRA/ [e bor | chi HOL / the PQH n}anager.n.ent .system has been partlally‘dlsa.bled (the code
history SPA HRI UK for triggering civilization spawns at later dates is still active). The
1 FRA PS(})};/ HRI HRI CHI HRI games ran on a large sized map, which may contain a maximum of
FRA/ RUS/ 24 players. We expect to see more competition for the victory in
2 HOL/spa | SPA GER | ARA/SPA | ARA HoL the former trials, whereas without proper management, there
UK/FRA/| POR/ RUS/ should be more risk of developing an unbalanced game.
3 TUR SPA HRI ARA TUR HOL ping &
4 UK/ SPA FS};/X RG%%/ UK /SPA /;}EAS/ HOL Table 5. Scores of the top 3 civilizations,
; X POR RUS/ ARAT RUS 7 oL with or without management system
SPA TUR HOL TUR Trial 1 Trial 2 Trial 3
SPA/ RUS/
6 UK HRI HRI ARA 1 am I:i'r'lfe civ | Final | | Final | | Final
; A POR/ | FRA/ UK AP/ [o g score score score
SPA RUS RUS scores
R UK INC/ UK/ | UK/HOL/| cHI/ UK/ - GER 3276 POR 3803 USA 3091
POR FRA ETH IND HRI Gamel || RUS | 2377 | USA | 3573 | MAL | 2445
. UK sPA | GER ARA | cmn GRE 1023 AZT | 2157 | GER | 3279 | RUS | 2388
TOR TAD FRA 586 o USA 3586 GRE 4676 GRE 4162
10 FRA SPA FRA POR IND PER519 |%| GRE | 2861 RUS 3466 RUS 3228
o " o T < err | RUS/ " KHM | 2569 | USA | 2898 | KHM | 3040
v S rRus | Y np | Y VIK | 3191 | NED | 3284 | POR | 3100
1 FRA POR/ [FRA/ [o e [RUS/ [Game2 | E| FRA | 3131 | CHI | 3045 | INC | 3031
FS};\/ HRI - NTR{?/ CHI 575 INC | 3103 | MAL | 2908 | FRA | 2945
13 UK /FRA POR HRI HOL A(I){A UK ROM 396 o CHI 3705 CHI 3524 CHI 4251
TRAT RA TRA T MONT PER382 || FRA | 3026 | MAY | 2825 | INC | 3991
14 UK SPA FRA jpoL | ara | HOR HOL | 2884 | ROM | 2806 | ROM | 2965
15 UK/ FRA INC TUR/ TUR TUR/ UK - RUS 3733 RUS 3434 CAR 3958
B GER RUS | Game3 | E| MON | 3130 | CAR | 3359 | SPA | 3909
Legend: UK = United Kingdom; FRA = France; HOL = Holland; SPA = Spain; POR = JAP 682 PER 2761 FRE 3085 KHM 3206
Portugal; INC = Inca; RUS = Russia; HRI = Holy Roman Empire; TUR = Turkey;
ARA = Arabia; ETH = Ethiopia; GER = Germany; CHI = China; JAP = Japan; IND = RUS 618 ° USA 3067 SPA 3670 SPA 3445
India; MON = Mongolia; empty = unexplored SPA 611 = SPA 2968 USA 3256 FRA 3278
. . .) MAY | 2926 | MAY | 2979 USA 2924
In Section 3.4, we mentioned roleplaying of Als by making them ENG | 3347 | GER | 2891 | ENG | 3546
aim to achieve specific goals. Although it is hard to demonstrate Game4 | E| INC | 3071 | TUR | 2763 | MON | 3047
that numerically, an example of roleplaying behaviour can be seen PER 717 MON | 2964 | ENG | 2754 | TUR | 2881
in Figure 4. This figure is from an example game played by RFC RUS 683 IND | 3429 | GER | 3487 | RUS | 3518
RAND, in which the Dutch roleplay their colonizing behaviour on IND 637 \; ENG | 3274 | IND | 3086 | GER | 3428
a random map. The motherland is located in the top middle of the PER | 3120 | PER | 2938 IND | 3174

map (the big, orange area), and it has founded several colonies in
far away, exotic lands (the other orange areas).

Figure 4. Expansion of the Dutch empire (in orange) in a
randomly generated map

In Table 5, results in the “w/” and “w/0” rows are quite different.
Among the top three civilizations at half game, 11.1% and 47.2%
(respectively with and without management system) are in the top
three at the end of the game. The difference is significant (Mann-
Whitney U-Test p < .01). Furthermore, within the three game
endings, the same civilizations are present a higher number of
times in the “w/0” case (70.8% against 41.6%), suggesting that
there is more variety in the possible outcomes of a game by using
the management system.

5. DISCUSSION

5.1 Discussion of the tests

Results in Table 3 confirm that for all the trials, the outcome is a
believable alternative history which satisfies our expectations. An
“alternative history” which would be regarded as realistic has to
feature European powers (especially maritime ones) colonizing

the Americas and the coastlines of most territories, with other
non-European civilizations, such as Ottoman Turkey and China,
to dominate other areas.

Focusing on North America, it is considered plausible having the
French monopolize the control of the colonies, as in Figure 5, or
other European powers, as in Figure 6. In fact, the events in the
history of the Earth could have been very different by just a small
previous change (e.g., a different outcome of the Anglo-French
war in North America). However, our generated history would not
be realistic if in 1775 AD, North America were, for instance,
dominated by Ethiopia through nuclear weapons. Such wildly
divergent alternate histories will not be seen in the mods.

Regarding the effectiveness of the stability system for strength
balance, results suggest that not only the balance is preserved
from overpowering players, but also the whole ecosystem changes
more dynamically. In Figures 7 and 8, strength ratings are plotted
against time on the horizontal axis. Figure 7 shows an example of
the development of civilizations’ strength under PGH

management, and it shows how civilizations’ strengths can vary
considerably. In comparison, Figure 8 shows an example of the
development of civilizations’ strengths without PGH management
system. In the latter case, civilizations’ strengths tend to grow
without limits. This causes a clear divergence of strengths.

Figure 5. Alternative history: North America controlled by
France, with three cities around the human player, in Trial #1.

Figure 6. Alternative history: East Coast of North America
controlled by Holland (the city in orange, in the north east)
and Britain (two cities in red, south and north), in Trial #5.

S zynr
—— Indis

|
|
|
i

//-/_/_

Figure 7. Record of civilizations power through the years, with
rises and falls due to the management of stability.

ez
— Khrner
— Nlongolia
—— England

Figure 8. Record of civilizations power through the years
without stability management.

5.2 Reception

The mod Rhye’s and Fall of Civilization was praised by
videogames press, labelled as “infinitely replayable” [2] and “a
fresh new coat of paint to the core Civilization gameplay” [5].
High popularity followed in the gaming community, where it was
regarded as an accurate history simulator. Alternative history
threads appeared in forums to discuss the different outcomes of
the autoplay and to post screenshots and stories. A version of the
mod was included in the official expansion pack Beyond the
Sword. Counting by number of downloads, it is the second most
popular mod for Civilization 1V, after Fall from Heaven 2.

5.3 Limitations

The biggest limitation of PGH is that, being an online process, it
requires a loading time at the beginning of the game. In RFC and
RFC RAND, depending on the amount of history to be generated,
the process can take from less than one minute, to potentially up
to one hour.

Such a long time is of course unacceptable in a product for casual
users. We name a few methods to reduce loading times:

e Some aspects of the game which are irrelevant to the
creation of the history may be disabled while autoplay is
running. Content that is not significant to the human
player can be broadly sketched. An example of this
concept can be found in Championship Manager /
Football Manager series: football players of lower
leagues cannot be accessed and feature fictitious names,
nevertheless they are part of the game’s ecosystem.

e Autoplay can start at a later time, designing manually
the intermediate starting point. In RFC, the first start
corresponds to the year 3000 BC, and the intermediate
start to 600 AD. Generation of a world in the Middle
Ages or Renaissance is significantly faster using the
intermediate start.

e It is possible to generate interesting worlds, place them
on a central server and let users download them.

5.4 Comparison

In the introduction, we mentioned the game Dwarf Fortress as
another example of world history generation. It features a very
detailed process of map making, whereas RFC and RFCRAND
are more focused on the subsequent development of civilizations,
managing complexity and balance through the Stability System, as
well as other tools to address the course of history. In general,
mods for Civilization IV have more stringent constraints about
realism (especially RFC on Earth map), in order to mimic the
mechanics of Earth history.

Both Dwarf Fortress and the mods described in this paper have to
face the same issue of processing time required for generation. It
should be noted that, in both works, the act of just watching the
results of the generation is regarded as enjoyable. Tracking world
history events in Dwarf Fortress is interesting to the extent that a
fan-made program was made to store all details in a database. For
RFC, in forum discussions, users often express elation at the
results they observed and share their experiences.

6. CONCLUSION

In this paper, we introduced a novel approach to Procedural
Content Generation (PCG), called Procedurally Generated History
(PGH). PGH consists in building a game world history through
autoplay. Our purpose is to procedurally generate an interesting
world to play, which we achieve through the use of autoplay to
make the Als generate the game’s ecosystem in a natural way. A
management system is necessary to force the game into a correct
or reasonable growth through balancing players’ strengths.

Our approach was implemented in a two mods for Sid Meier’s
Civilization IV. We evaluated the soundness and balance of the
ecosystems generated by the mods, and found that they are
generally realistic with regards to possible alternate histories, and
tend to be well-balanced.

Future work includes improving generation time in order to be
reasonable for any desired starting time. The concept of disabling

certain features of the game in order to have a faster autoplay can
also be considered spatially, using an adaptive map, where content
is generated in detail near the player and only sketched in other
areas, as long as they are not revealed to the human player.

ACKNOWLEDEGMENTS

This research is partially supported by the Japanese Society for
the Promotion of Science. We also thank Firaxis Games for
providing the source code of Sid Meier’s Civilization IV and
making possible to use the game as a testbed for our research.

7. REFERENCES

[1] Ashlock, D. and McGuinness, C. 2014. Automatic
generation of fantasy role-playing modules. 2014 IEEE
Conference on Computational Intelligence and Games (CIG)
(Agosto 2014), 1-8.

[2] Chick, T. 2007. “Sid Meier’s Civilization IV: Beyond the
Sword”. Yahoo! Games.
https://web.archive.org/web/20081007042243/http://videoga
mes.yahoo.com/pc/sid-meiers-civilization-iv-beyond-the-
sword/review-523931-2 Retrieved 30 May 2010.

[3] Doull, A. 2008. The Death of the Level Designer: Procedural
Content Generation in Games.
http://njema.weebly.com/uploads/6/3/4/5/6345478/the death
_of the level designer.pdf

[4] Johnson, S., Playing to Lose: Al and Civilization, Game
Developers Conference, 2008. Available:
https://www.youtube.com/watch?v=IJcuQQ1leWWI

[5] Park, A. 2007. “Civilization IV: Beyond the Sword Review”.
GameSpot. Available:
https://web.archive.org/web/20090627021825/http://uk.game
spot.com/pc/strategy/civilizationivbeyondthesword/review.ht
ml? Retrieved 30 May 2010.

[6] Riek, L.D. 2012. Wizard of Oz Studies in HRI: A Systematic
Review and New Reporting Guidelines. Journal of Human-
Robot Interaction. 1, 1 (Aug. 2012).

[7] Sorenson, N. and Pasquier, P. 2010. Towards a generic
framework for automated video game level creation.
Proceedings of the European Conference on Applications of
Evolutionary Computation (EvoApplications), vol. 6024.
Springer LNCS, 130-139.

[8] Tainter, J. A. 1990. The Collapse of Complex Societies;
Reprint edition.; Cambridge University Press: Cambridge,
Cambridgeshire; New York.

[9] Togelius, J., Yannakakis, G.N., Stanley, K.O. and Browne,
C. 2011. Search-Based Procedural Content Generation: A
Taxonomy and Survey. IEEE Transactions on Computational
Intelligence and Al in Games. 3, 172-186.

[10] Togelius, J., Champ, A.J., Lanzi, P.L., Mateas, M., Paiva, A.,
Preuss, M. and Stanley, K.O. 2013. Procedural Content
Generation: Goals, Challenges and Actionable Steps.
Artificial and Computational Intelligence in Games. Simon
M. Lucas and Michael Mateas and Mike Preuss and Pieter
Spronck and Julian Togelius. 61-75.

