
Civ 6 Unit Asset Tutorials

Level 2 - Change your behavior!
By Leugi

Mixing and tinting ingame assets is usually enough for making Civ6 units, but sometimes you

will meet up with some issues. If you wanted to use, say, the cavalry armor for a melee unit,

you can’t directly because of animations. The managing of mounted units is also slightly

different to that of unmounted ones, so we’ll be covering that up too. And of course, units

need icons, so that’s kind of an issue right?

So we’ll now explore that, as well as some basic but very necessary stuff about .XLPs

This tutorial assumes you know everything from Level 1, so if you don’t know how to set up

an unit’s artdefine or what the hell the modart file is I must tell you to go back to that.

1. Level 1 - Hello World: Introduces the process of unit asset previewing, tints, and

creating artdefines. This is the basic level.

2. Level 2 - Change your behavior!: Introduces creating custom assets, changing the

animations, adding xlps, icons and mounted units.

3. Level 3 - Material Needs:​ Introduces materials and basic texture editing.

4. Level 4 - A Model to Follow: Introduces basic model editing for custom units, geo

files and stuff.

What you need:

● Civ 6 and Civ6 SDK Tools.

● Patience. Required to run the Asset Editor.

● This base ​project file.​ (includes a dummy unit for testing purposes)

Creating our base Asset

Save As

So we need to start by opening the Asset Editor and the Asset Previewer, come back in like 2

hours when that opens…

…

Ok good, now we can start. We are going to make an interesting mounted unit so let’s use

the cavalry as a base. We’re going to pick an example that will not only look nice, but also

https://docs.google.com/document/d/1vKu5QW7AyBKXN_k_SNk6Dp-XDK2_m6aLiBT9PMGsQeM/edit?usp=sharing
https://www.dropbox.com/s/297c1uzhy2xubg7/UnitTutorial%20-%202.zip?dl=0

has a lot of the worst things that you could find when changing behaviors (it’s not that bad

tho). Open up the CrouchingTiger_ArmorA asset and preview it.

Cool huh? However, this armor is not easy to use for custom units for a single reason. Its

animations are that of a guy that uses a cannon. Thankfully there’s a way to fix this, so we’ll

give him a horse!

The first thing we have to do is creating a new asset based on the Crouching Tiger one. To

do this go to File > Save As.

A popup will appear asking you for a new name for your entity. ​It is very important to give

it the right name here, ​since changing names afterwards can be rather buggy and krill your

Asset Editor! So we’ll name it UlanZalata_Armor. After a bit your file should be saved and

your new asset is created.

Changing Behaviors

So, how do we change the animations to turn this cute model into a horseman? Well,

animations in civ6 are handled through what we call “Behaviors”.

Think of Behaviors as a kind of package that contains animations for specific unit types. So

for example a “Horseman” Behavior will give the model the animations we need.

So, to check Behaviors go to the “Behaviors” tab on the Asset Editor.

First erase the SingleBiped_Deaths (we need another one for a Mounted Biped) And then

you need to load the following Behaviors:

● Horseman

● SingleBiped_MountedDeaths

Save your Asset. And try to preview an animation. Unless you preview the Death animation,

you’ll notice that nothing has changed D:

This is because the Crouching Tiger is a very special case. Aside from Behaviors, some

models can have specific animations that will override the behaviors. We’ll need to remove

these ones if we want to have him mounted. Go to the Animations tab next to Behaviors.

There you will see a list of all Animations, and then a row called “Animation Name”. This is

where the overridden animations come from.

Delete everything that is on Animation Name. Save and go to preview an animation. If you

did everything well, it should now have actual Horseman animations!

Now… Zoom out your preview and let’s see the Attack animation! (Zooming out is useful

because Horsemen move a lot when attacking)

If you managed to pay attention, our attack animation is weird. It has this strange glow, as if

there was some sort of fire or something. This is because the Fire effect from the Crouching

Tiger is still there (since they attack with actual cannons) ​[BTW, if you want to reposition the

asset back to its origin point you can click on the Repreview button]

So… what do we do now?

Triggered

Assets have something interesting called Triggers. Triggers are how certain Visual FX and

Sound FX are set to run at specific times during specific animations; this is how the game

tells when to put that shiny light on the cannon for the Crouching Tiger.

In order to modify triggers of a given asset we need to access the Asset Trigger Editor, right

on the Window Menu.

Once open you should see something like this:

Very creepy right? We won’t go into full detail for the purposes of this tutorial, but as you

can see there’s a bunch of VFX, light and sound definitions for different animations, as well

as a timeline thing with keys set to it.

In most cases these Triggers are set on the Behaviors (so, the horseman part of it is already

in now that we set it as the behavior), this means that we can just get our way by removing

all Triggers from this asset. ​(phew) ​If you ever need to add particle effects or fire to a unit

this could be handy though (for example a person holding a torch)

There is a hidden button that Removes Timelines that don’t have an animation assigned to

them, we’ll use this one first for cleaning up.

If any animation still exists after that, select an animation name and press the Remove

Timeline button to kill it.

You can now close the Asset Trigger Editor, save your asset and rejoice because all traces of

cannon shooting are gone!

(BTW, in most cases you won’t have to touch the Asset Trigger Editor; just when the asset

includes it apart from the behaviours)

Custom Attachments

Alright let’s set up our rider on the preview. Reset the preview and stop all animations. Put

the following assets on the following attachment points:

● Root:​ Male_Asian_MediumBody_HandsA, Male_Asian_HeadF

● WeaponPrimary: ​Horseman_SpearA

You should have something like this:

Looks nice enough, but as you can see the position of the head is kind of iffy. While you can

keep this as is, we’re going to do something to fix it. Go to the Attachments tab on the Asset

Editor:

As you can see, the Crouching Tiger has already a bunch of custom attachments. You can

delete them since we won’t be using any of them, however there’s no need. Instead we’re

here to create a new attachment point. Click on the green Plus button to add a new

attachment. You should see this:

So with these cells we can set up our new attachment point. Please note that custom

attachment points don’t animate so using this for full bodies and stuff isn’t going to be

great. These are the bits of info we need.

● Attachment Point Name: ​Whatever name we want.

● Model Instance: ​Is usually Root, as it refers to which model it should apply into.

● Bone Name: ​You can use the button at the cell to look at all the bones of the model.

In this case we need “Head”

● Position: ​There are 3 values here, corresponding to x, y and z. This allows us to

slightly change the position of our attachment if we’re not too happy with it.

● Scale: ​Same as above, but, you know, with rotation.

● Scale: ​Refers to the size. 1 is default.

We can now fill the cells with what we need:

● Attachment Point Name: ​Head_Fix

● Model Instance: ​Root

● Bone Name: ​Head

● Position: ​-11,2; -0,75; 0

● Position: ​90; 0; -90

● Scale: ​0,95

Now set the head we put earlier to this attachment instead. You should have something that

looks like this:

So… the rider is ready, but where is the horse?

Horseback Riding 101

If you check all the attachments of our rider, there isn’t a single one where we can attach

the Horse. This is because the way mounted units are handled is slightly different than that

of unmounted units. In the artdefine the horse and the rider are set up independently and

the rider is then attached to the horse.

The problem is that this makes it a bit hard to preview. Since we have no place to put the

horse at, we’d need to preview 2 different assets. In order to do this you need to find the

“Add Asset” button on the Previewer. (Sometimes it hides on the UI so be sure to move

everything around to find it)

The Asset Browser box we now know so well will appear. Just like with units, the base for

the asset should be the HorseArmor instead of the body. Search for

Horseman_HorseArmorA and open it.

Looks a bit strange right? But that’s just how it is. On the new asset we can set up

animations, attachments and tints just like before.

Now let’s add attachments to the horse armor:

● Root:​ Horse_Medium_BodyB; Horse_Medium_Mane_C; Horse_Medium_TailA

So… we now have both our Horse and our Rider ready for battle. However, life’s not

perfect. Play the Idle animation of the Horse and you’ll see what I mean.

As you can see, the horse and the rider are not going to play both animations at the same

time automatically. And the positioning is also off. Without stopping the Horse’s idle

animation, play the Riders animation.

So yeah, the position is completely off. The way to fix this is by going to the transform tab

and setting the position manually. Set the Position X to 11 and the Position Z to - 1

And there, we can finally see at our unit! Save your asset and rejoice!

Preparing an icon

Using the Previewer

It is during this step in which it is the most adequate idea to take a screenshot for the icon.

We need to do some setup on the Previewer before that.

On the top right side of the Previewer you should see the Base tab. There we need to set the

following options:

Next go to the Bloom tab and disable it.

Almost done. Now we have to change the lighting to one that doesn’t obscure the face.

Please note that when changing the game environment all animations will be reset (sadly).

You can use whatever light you see fit, but personally I find “StadiumCenter_Game” good

for icon making. Remember to play your animation and set your position again and you

should have this:

So… now that we have our screenshot we can use Photoshop or Gimp to remove the

background. And then we can use a template such as ​this​ to make the icons.

The result should look like this:

You need to save icons in TGA or DDS format keeping the transparency as alpha channels. (I

personally recomend TGA to prevent quality loss) The sizes required for units are the

following: 256, 200, 95, 70, 50, 38.

https://cdn.discordapp.com/attachments/373877880180047872/383030198645424130/ChangSuek_Portrait.psd

For the sake of continuing with the tutorial download the following files with the icons and

flags in all required sizes:
SUPER IMPORTANT FILE

XLPs

Introduction to XLPs

So, we have a custom asset, and a bunch of icons. But how do we make them be recognized

by the game? The answer is XLPs.

Whenever you have custom assets and textures you need to make the XLPs before

proceeding with the artdefines. XLPs are basically package files that will be cooked by the

game when delivering the final mod.

In order to make a XLP you must go to the asset editor and choose New from the File menu.

The option to make an XLP will appear (just like when making artdefines)

XLPs come in different classes depending on your needs. First we’ll create a XLP for the new

asset we created. On the xlp you must fill this information:

One can change the Package Name to anything, but I prefer using the XLP class name as the

Package Name as it seems to me it prevents crashes and bugs. (might be a placebo though)

Before doing anything else, save the XLP in the XLP folder of your project. ​YOU MUST SAVE

IT WITH THE SAME NAME AS THE PACKAGE NAME PLACED ABOVE​, otherwise errors will

appear and you’ll be dead.

Once it finishes saving you can add our new asset by pressing the “Add Existing” button.

https://www.dropbox.com/s/jujbathpsi922lt/test%20icons.rar?dl=0

The Asset Browser will appear, and you should be able to find our UlanZalata_Armor asset.

Add it and save the XLP again.

Now we’ll do the same for our icons (which I hope you remembered to make/download)

Create a new XLP of the UITexture class and save. This time instead of the “Add Existing”

button we’ll need to use the “Add New” that is right beside it.

The Mini Importer popup should appear:

There you can click on +Add Source File to put any DDS or TGA file you want to add to your

mod. Something very important to know is that ​ONCE A FILE IS ON THE XLP, IT IS FOREVER

LINKED TO ITS SOURCE FILE. ​This means that if you change the source file (say, you decided

to change a little detail on an icon and you replace the file directly), a bunch of errors will

appear because the XLP is not up to date with the source file. In order to modify your Source

Files you should first remove them from your project and from the XLP.

Anyway, add all the icons we require and press Import. Then save your XLP file.

Some more info

When you import files to the XLP, your project will now have all of them in a Textures Folder

(check in explorer if you do not see them on modbuddy). What importing does is convert

any TGA to DDS, and then it creates a .tex file which is how the game interprets the .dds

Both files have the same name, and must not be touched unless you need to modify the

textures (in which case, again, I recommend deleting them and their reference on the xlp

and reimport).

Modart File shenanigans

Just like artdefs, it is very important to have xlps referenced on the mod.art.xml file.

They go on a different section below the artdefs. You should see a place such as this:

Between the relativePackagePaths we need to put the names of our xlps like this:

Save the mod.art.xml file and we may proceed with the ArtDefines

Mounted Art Defines

UnitBins with custom assets

So, we already know how to make Art Defines, but in the case of mounted units there is a

slight difference.

Create a new artdef file called Units.Artdef. We’ll first need to make a unit bin with our new

custom asset. Use the following structure:

On the Assets category you’ll find 3 columns (Name, Asset, Scale)... Fill the Asset scale with

our custom asset’s name (UlanZalata_Armor). You must type the name manually because

the BLP entry browser sometimes doesn’t load custom assets. If you made the xlp file right,

you should be able to type the name of the Asset and then it will stay like that.

Now that we have our new UnitBin, let’s set up our UnitMember.

Setting the Rider

So… remember how we set up a Custom Attachment on the asset for our head fix? This is

the part where we actually get to use it.

Create a new UnitMemberType with the following hierarchy:

Something very important to note here is that the name of the variation is “Rider”, this is

how we’ll recognise it when we setup the horse.

Under UlanZalata you need this information (taken from the Horseman unit):

Then under Rider, you need this:

Checking the IsAttachment box is very important for mounted units

Finally, these is the info you need to put on each attachment:

● Armor:

○ Point: ​Root

○ Bins: ​Armor/UlanZalata (the one we added a bit ago)

● Body

○ Point: ​Root

○ Bins: ​Bodies/Male_MediumBody_HandsB

● Weapon

○ Point: ​WeaponPrimary

○ Bins: ​Spears/Horseman

● Head

○ Point: ​Head_Fix (the custom attachment we made)

○ Bins: ​Heads/Male

Setting the Horse

So, we now have the Rider set up. In order to add the horse we need to add it as a Variation.

And this is how the Attachments are set up:

● Armor

○ Point: ​Root

○ Bins: ​Armor_Horse/Horseman

● Body

○ Point: ​Root

○ Bins: ​Animals/Horse_Medium

● Tail

○ Point: ​Root

○ Bins: ​Accessories_Horse/Tails

● Mane

○ Point: ​Root

○ Bins: ​Accessories_Horse/Manes

● Rider

○ Point: ​RiderAttach

○ Bins: ​V:Rider ​(THIS is how the Rider is referenced, V: … allows for a Variation

set as an attachment to be placed on the armor)

And with that our UnitMember is done :D

Unit

So time to set up the Unit artdef. This time there’s nothing new compared to the last level,

so this is pretty much the hierarchy:

Remember that mounted units only show 2 members at the same time!

Now save your artdefs. You may now close the Asset Editor. We’re almost ready!

Icon SQL

Adding Icons to the Database

So, we now have our artdefs and xlps ready. But in order for our custom icons to be

recognized by our unit we need to set them up on a xml or sql file (And everyone knows SQL

is far superior).

On ModBuddy you’ll see a folder called sql. Add a new sql file and call it TestUnitIcons.sql

This is the content you need:

So as you can see, one can set different ethnicities for icons. For now we can just assign the

icon we made to all ethnicities. The game will recognize these as the icons by the TEST

(everything that is after UNIT_) automatically.

Go to the mod properties and add the UpdateIcons In-Game Action

Before building the mod, remember to check if all references to the XLPs and Artdefs are in

the mod.art.xml (hint: the Units.artdef might not be in)

Build the mod and now we’re ready to test!

Rejoice

If you did everything fine, you should have our unit, icon and flag all displaying on the game.

Rejoice for​ you have passed Level 2! ​Congratulations as you can now make virtually every

combination possible that don’t require custom textures or models! Yay!

