• We are currently performing site maintenance, parts of civfanatics are currently offline, but will come back online in the coming days (this includes any time you see the message "account suspended"). For more updates please see here.

Cool Pictures 14: no , it wasn't me who painted Mona Lisa

I suppose GIFs qualify as pictures?
 

Attachments

  • f0aa22c1e803616a2a55c08e2b9cfbe3.gif
    f0aa22c1e803616a2a55c08e2b9cfbe3.gif
    620.5 KB · Views: 339
Last edited by a moderator:
Moderator Action: Not really. We do not want to fill this thread with gifs. Let's stick with pictures of "real" things (as opposed to AI generated images).
 
A polar bear sleeping on an iceberg. Credits in the pic name. Bear looks chonky, but I don't think this is the way things were intended up in the arctic circle. :sad:

View attachment 666186
There's too much open water between ice floes now. If this bear had tried to swim that distance, it would likely have been in danger of drowning.

It's the cubs who do drown, as they don't have a hope of swimming the distance that their parents can, and the parents can't carry them.
 
An interesting historical image (eg @r16 ), from the time when the army of the sultan was fighting in co-operation with the Greek army, against the rebels in the Ottoman Empire following WW1.
Turkish troops can be seen to the left, with the characteristic head-gear.

1688294809585.png
 
ı haven't forgotten or forgiven anything . Just busy .
 
The alt-right don't tend to like queer people, you know.
 
1688412436529.png


Cronenberg has no business writing a prologue on Kafka, but come on, the graphical art is awesome :yup:

(doesn't even matter that it repeats the falsity that the creature looks like a roach - it's too cool to be cancelled due to that)
 
baobab-2560px-wide-h-2560x1820.jpg

The Milky Way arch over baobab trees in Madagascar. The clouds of colour are caused by airglow — the effects of processes in the atmosphere such as light-emitting chemical reactions or the recombination of charged atoms.
 
Baby picture
d41586-023-02222-3_25576334.jpg

Researchers have captured the most-detailed images yet of human embryos developing in real time, using two common laboratory tools – fluorescent dyes and laser microscopes.

Spoiler Article :

The technique, described in Cell on 5 July, allows researchers to study crucial events in the first few days of development without genetically altering the embryos, which has previously restricted the use of some imaging techniques in human embryos, owing to ethical concerns.

“This is the first time we can actually image an early human embryo at the very early stages of development with cellular resolution,” says Nicolas Plachta, a cell biologist at University of Pennsylvania in Philadelphia and a co-author of the paper. “We can see single cells and how they interact with each other as they form the pre-implantation embryo.”

As well as providing a new tool for researchers, the imaging technique could lead to the development of ways to non-invasively screen embryos conceived through in vitro fertilization (IVF).

Fluorescent dyes
Researchers usually have to study human embryos using post-mortem samples, because many tools for labelling living cells involve genetically modifying them to produce fluorescent proteins.

Plachta and his colleagues developed a workaround using fluorescent dyes that can simply be added to a sample to mark particular cell structures.

The embryos used in this study were donated for research through an IVF clinic. They are at a very early stage of development — consisting of only 60 to 100 cells each — and don’t yet have any fully formed tissues or organs, says Plachta.

The researchers used SPY650-DNA, a fluorescent dye that labels genomic DNA, and SPY555-actin, which labels the protein F-actin that forms the skeleton of cells. They then visualized dozens of live embryos during the first 40 hours of development using powerful laser scanning microscopes.

“We could see those cells dividing and chromosomes segregating, and we could even capture in real time chromosome segregation defects,” says Plachta.

For example, the researchers observed that cells in the outer layer of the embryo, known as the trophectoderm, lose some of their DNA during a stage of cell replication called interphase — in which cells are replicating their DNA.

Such errors could be linked to chromosomal abnormalities such as aneuploidy, a condition that is marked by extra or missing chromosomes in the early embryo and is associated with pregnancy loss and failure of implantation.

“Knowing when aneuploidies occur allows us to get opportunities to intervene and try to correct the issue,” says Zev Williams, a fertility specialist at Columbia University in New York City. The latest images reveal the first days of embryo development “with a clarity never seen before”, he adds.

Not like mice
The researchers were also able to compare key events in human embryos and mouse ones — which are often used as models to study embryonic development. They observed some important differences. For example, a process called compaction, which involves alterations in cell shape, starts at the 12-cell stage in human embryos compared with the 8-cell stage in mice; the process is also more asynchronous in human embryos, leading to variations in inner- and outer-cell formation.

“Detecting these small changes is what makes this paper so novel,” says Sade Clayton, a cell biologist at Washington University in St. Louis, Missouri. “These small differences could actually [translate to] quite large differences in terms of uterine development.”
 
aYl6gzq.png

A biodegradable land art painting entitled The Sun Has an Appointment with the Moon’ by the French-Swiss artist Saype, near the summit of the Grand Chamossaire mountain, above the alpine resort of Villars-sur-Ollon
 
Back
Top Bottom