Symphony D.
Deity
With some research and development, could UAVs be next? Seriously, this is pretty creepy. Check it out. A summary of the more interesting bits:
Makes one wonder.
If you're interested in programming autonomous weapons, this has rather scary applications. Doesn't appear to be fake considering the sources, and a wiki page also references a discovery.com article. What's also kind of interesting is this happens to be two years old...The "brain" -- a collection of 25,000 living neurons, or nerve cells, taken from a rat's brain and cultured inside a glass dish -- gives scientists a unique real-time window into the brain at the cellular level.
[...]
DeMarse experimental "brain" interacts with an F-22 fighter jet flight simulator through a specially designed plate called a multi-electrode array and a common desktop computer.
"It's essentially a dish with 60 electrodes arranged in a grid at the bottom," DeMarse said. "Over that we put the living cortical neurons from rats, which rapidly begin to reconnect themselves, forming a living neural network a brain."
The brain and the simulator establish a two-way connection, similar to how neurons receive and interpret signals from each other to control our bodies. By observing how the nerve cells interact with the simulator, scientists can decode how a neural network establishes connections and begins to compute, DeMarse said.
When DeMarse first puts the neurons in the dish, they look like little more than grains of sand sprinkled in water. However, individual neurons soon begin to extend microscopic lines toward each other, making connections that represent neural processes. "You see one extend a process, pull it back, extend it out and it may do that a couple of times, just sampling who's next to it, until over time the connectivity starts to establish itself," he said. "(The brain is) getting its network to the point where it's a live computation device."
To control the simulated aircraft, the neurons first receive information from the computer about flight conditions: whether the plane is flying straight and level or is tilted to the left or to the right. The neurons then analyze the data and respond by sending signals to the plane's controls. Those signals alter the flight path and new information is sent to the neurons, creating a feedback system.
"Initially when we hook up this brain to a flight simulator, it doesn't know how to control the aircraft," DeMarse said. "So you hook it up and the aircraft simply drifts randomly. And as the data comes in, it slowly modifies the (neural) network so over time, the network gradually learns to fly the aircraft."
Although the brain currently is able to control the pitch and roll of the simulated aircraft in weather conditions ranging from blue skies to stormy, hurricane-force winds, the underlying goal is a more fundamental understanding of how neurons interact as a network, DeMarse said.
Makes one wonder.