We have previously mentioned that the universe may be considered an isolated system. As such, it may be subject to the Second Law of Thermodynamics, so that its total entropy is constantly increasing. It has been speculated that the universe is fated to a heat death in which all the energy ends up as a homogeneous distribution of thermal energy, so that no more work can be extracted from any source.
If the universe can be considered to have increasing entropy, then, as Roger Penrose has pointed out, an important role in the disordering process is played by gravity, which causes dispersed matter to accumulate into stars, which collapse eventually into black holes. Jacob Bekenstein and Stephen Hawking have shown that black holes have the maximum possible entropy of any object of equal size. This makes them likely end points of all entropy-increasing processes.
The role of entropy in cosmology remains a controversial subject. Recent work has cast extensive doubt on the heat death hypothesis and the applicability of any simple thermodynamic model to the universe in general. Although entropy does increase in an expanding universe, the maximum possible entropy rises much more rapidly and leads to an "entropy gap," thus pushing the system further away from equilibrium with each time increment. Complicating factors, such as the energy density of the vacuum and macroscopic quantum effects, are difficult to reconcile with thermodynamical models, making any predictions of large-scale thermodynamics extremely difficult.